The Biobased and Renewable Products Advocacy Group (BRAG) helps members develop and bring to market their innovative biobased and renewable chemical products through insightful policy and regulatory advocacy. BRAG is managed by B&C® Consortia Management, L.L.C., an affiliate of Bergeson & Campbell, P.C.

By Lauren M. Graham, Ph.D.

A collaboration between researchers at the Department of Energy's (DOE) Pacific Northwest National Laboratory (PNNL) and Washington State University (WSU) has led to the development of a method for converting hydrothermal liquefaction wastewater into a usable and valuable commodity.  The method utilizes the byproduct wastewater stream from the continuous thermo-chemical process that PNNL researchers developed to produce biocrude from algae.  The wastewater contains a variety of different chemicals in small concentrations, such as carbon and nutrients from the algae, and accounts for approximately 90 percent of the output.  Researchers at WSU Tri-Cities’ Bioproducts, Sciences and Engineering Laboratory have developed a method to process the wastewater using anaerobic microbes.  The microbes break down the components of the wastewater to produce bionatural gas and a solid byproduct that can be recycled back into the hydrothermal liquefaction process or used as a fertilizer.  Following the success of the partnership, PNNL and WSU researchers are collaborating on the conversion of sewage sludge to biofuel, bionatural gas, and nutrients using a similar strategy.


 

By Lauren M. Graham, Ph.D.

On September 26, 2017, the U.S. Department of Energy (DOE) announced the selection of an additional project for the Bioenergy Technologies Office’s (BETO) Advanced Algal Systems Program funding opportunity announcement (FOA).  DOE is awarding up to $3.5 million to the National Renewable Energy Laboratory (NREL) to more than double the productivity of biofuel precursors from algae.  Researchers aim to improve productivity by increasing algal cultivation productivity, optimizing biomass composition, and extracting and separating different types of algal lipids to reduce the cost for lipid upgrading to renewable diesel.  The project team includes researchers from NREL, as well as Colorado State University, Colorado School of Mines, Arizona State University, Sandia National Laboratories, POS Bio-Sciences, Sapphire Energy, and Utah State University.
 
In addition to the $3.5 million being provided, DOE provided $15 million in Fiscal Year 2016 for three projects under the Algal Biomass Yield, Phase 2 (ABY2) FOA.  BETO expects that projects selected under this FOA will help demonstrate a reasonable and realistic plan to produce 3,700 gallons/acre/year by 2020.


 

 

By Lauren M. Graham, Ph.D.

On September 19, 2017, the U.S. Department of Energy (DOE) announced 18 projects from the Macroalgae Research Inspiring Novel Energy Resources (MARINER) program will receive $22 million in funding through the Advanced Research Projects Agency-Energy (ARPA-E).  The MARINER projects aim to develop tools to address the technological challenges to growing and harvesting macroalgae efficiently and cost-effectively for use as a feedstock for biofuels and other bioproducts.  Such tools would support the goal of the United States becoming a leader in the production of macroalgae to improve U.S. energy security and economic competitiveness.  According to Eric Rohlfing, the ARPA-E Acting Director, “the United States has offshore resources capable of producing enough seaweed to handle as much as 10 percent of our demand for transportation fuel.” 

The cross-disciplinary MARINER projects focus on transformative, systems-level improvements and engineering, including advanced research in farm design and autonomous operation, which draw on fields such as cultivation and harvesting systems, advanced components, computer modeling, aquatic monitoring, and advanced breeding and genetics tools. 
 
The full list of the MARINER projects is available on the ARPA-E website.


 

By Kathleen M. Roberts

On September 8, 2017, the U.S. Department of Energy (DOE) selected an additional four Productivity Enhanced Algae and Toolkits (PEAK) projects to receive up to $8.8 million.  The projects aim to develop high-impact tools and techniques that will increase the productivity of algae organisms to reduce the costs of producing algal biofuels and bioproducts.  In total, DOE has awarded over $16 million in funding to the initiative. 
 
The project winners include:

  • Colorado School of Mines, in partnership with Global Algae Innovations, Pacific Northwest National Laboratory, and Colorado State University, which will use advanced directed evolution approaches in combination with high-performance, custom-built, solar simulation bioreactors to improve the productivity of robust wild algal strains;
  • University of California, San Diego, which will work with Triton Health and Nutrition, Algenesis Materials, and Global Algae Innovations on the development of genetic tools, high-throughput screening methods, and breeding strategies for green algae and cyanobacteria, targeting robust production strains;
  • University of Toledo, in partnership with Montana State University and the University of North Carolina, which will cultivate microalgae in high-salinity and high-alkalinity media to achieve productivities without needing to add concentrated carbon dioxide, and deliver molecular toolkits, including metabolic modeling combined with targeted genome editing; and
  • Lawrence Livermore National Laboratory, which will ecologically engineer algae to encourage growth of bacteria that efficiently remineralize dissolved organic matter to improve carbon dioxide uptake and simultaneously remove excess oxygen.

 

By Lauren M. Graham, Ph.D.

Sandia National Laboratories (Sandia) is investigating whether algae can be used to transform the Salton Sea, one of California’s largest and most polluted lakes, into a productive and profitable resource.  The Salton Sea Biomass Remediation project (SABRE), which is funded by the U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO), aims to use algae to rid the lake of pollutants while creating a renewable, domestic source of fuel and other chemicals.   Algae are known to thrive in environments like the Salton Sea, which contains elevated levels of nitrogen and phosphorus due to agricultural runoff. 
 
In the first phase of the project, Sandia partnered with Texas A&M AgriLife Research to investigate the efficacy of a new algal farming method, known as the “Algal Turf Scrubber” floway system.  The algae consume the nitrogen and phosphorus from the polluted water that is pumped into the system using solar-powered pumps.  Clean water is then deposited back into the lake.  
 
The second phase began in May and the initial results indicate that the system can produce a quantity of algae comparable to raceways, the traditional algal farming method.  The algae being grown are native to the area which makes it more resistant to attacks from local pathogens and predators.  By helping to clean polluted water, Sandia researchers have overcome a major criticism of algae as a biofuel source, specifically that farming algae requires too much water.  Additionally, the removal of pollutants, such as nitrogen, phosphorus, and other fertilizer components, is expected to provide a model of remediation for algae blooms.


 

 

 

By Lauren M. Graham, Ph.D.

On July 11, 2017, DOE announced the selection of three projects focused on reducing the costs of producing algal biofuels and bioproducts that will receive up to $8 million in funding.    The projects aim to generate high-impact tools and techniques for increasing the productivity of algae organisms and cultures and biology-focused breakthroughs.  The project winners include:

  • Lumen Bioscience, which will work with the National Renewable Energy Laboratory on the agricultural production of algae on otherwise non-productive land in rural eastern Washington State by rapidly engineering strains that grow robustly in seawater, resist contamination and predation, and accumulate substantial amounts of energy-rich components;
  • Global Algae Innovations, which will work in partnership with Sandia National Laboratories, University of California at San Diego – Scripps Institution of Oceanography, and the J. Craig Venter Institute to deliver a tool for low cost, rapid analysis of pond microbiota, gather data on the impacts of pond ecology, and develop new cultivation methods that utilize this information to achieve greater algal productivity; and
  • Los Alamos National Laboratory, which will work with Sapphire Energy to help the algal research and development community better understand these metrics at commercial scales by evaluating rationally designed pond cultures containing multiple species of algae, as well as beneficial bacteria, to achieve consistent biomass composition and high productivity.

 

By Lauren M. Graham, Ph.D.

On June 19, 2017, Synthetic Genomics Inc. announced a breakthrough in its collaboration with ExxonMobil involving the modification of an algae strain that more than doubled its oil content to 40 percent without significantly inhibiting the strain’s growth.  Synthetic Genomics researchers identified a genetic switch that could be fine-tuned to regulate the conversion of carbon to oil in the algae species, Nannochloropsis gaditana, and established a proof-of-concept approach for the new process.  The achievement is a key milestone in the partnership that aims to demonstrate that algae can be incredibly productive as a renewable energy source with a corresponding positive contribution to our environment.  Additional research, testing, and analysis is required to ensure the process is commercially viable. 


 
 1 2 3 >  Last ›