The Biobased and Renewable Products Advocacy Group (BRAG) helps members develop and bring to market their innovative biobased and renewable chemical products through insightful policy and regulatory advocacy. BRAG is managed by B&C® Consortia Management, L.L.C., an affiliate of Bergeson & Campbell, P.C.

By Lynn L. Bergeson

On July 16, 2018, the National Science Foundation (NSF) announced a $12 million investment in the Semiconductor Synthetic Biology for Information Processing and Storage Technologies (SemiSynBio) program, a partnership between NSF and Semiconductor Research Corporation (SRC).  Researches expect that integrating biological structures with semiconductor technology could increase current data storage capabilities by 1,000 times, while using less energy than current technology.  "While today's data storage devices are smaller and more powerful than ever before, we have the potential to catalyze a new wave of innovation that will push the boundaries for the future," stated Erwin Gianchandani, acting NSF assistant director for Computer and Information Science and Engineering (CISE).  Further, "[t]his research will pave the way for devices with much greater storage capacity and much lower power usage. Imagine, for example, having the entire contents of the Library of Congress on a device the size of your fingernail."   The funded projects include:

  • DNA-based electrically readable memories:  Joshua Hihath, University of California-Davis; Manjeri Anantram, University of Washington; Yonggang Ke, Emory University.
  • An on-chip nanoscale storage system using chimeric DNA:  Olgica Milenkovic, University of Illinois at Urbana-Champaign.
  • Highly scalable random access DNA data storage with nanopore-based reading:  Hanlee Ji, Stanford University. 
  • Nucleic Acid Memory: William Hughes, Boise State University.
  • Very large-scale genetic circuit design automation:  Christopher Voigt, Massachusetts Institute of Technology; Kate Adamala, University of Minnesota-Twin Cities; Eduardo Sontag, Northeastern University.
  • Redox-enabled Bio-Electronics for Molecular Communication and Memory (RE-BIONICS):  William Bentley, University of Maryland College Park.
  • YeastOns:  Neural Networks Implemented in Communicating Yeast Cells: Rebecca Schulman, Johns Hopkins University; Eric Klavins, University of Washington; Andrew Ellington, University of Texas at Austin.
  • Cardiac Muscle-Cell-Based Coupled Oscillator Networks for Collective Computing:  Pinar Zorlutuna, University of Notre Dame.

 

By Lynn L. Bergeson

The National Science Foundation (NSF) awarded Grow Bioplastics, a University of Tennessee student start-up, a $225,000 Small Business Innovation Research (SBIR) grant.  The funding will support research and development on new biodegradable plastics from lignin.  The biobased plastic will be used for agricultural applications, such as plastic mulch.  Grow Bioplastics’ biodegradable film can be plowed into the soil after each use, offering a solution to the additional labor costs and environmental impact of current nondegradable films.  According to Tony Bova, Grow Bioplastics co-founder and CEO, the “funding will help [Grow Bioplastics] validate the fundamental science behind our lignin-based plastic technology, allow us to hire our first employees here in East Tennessee, and bring us one step closer to realizing our vision for a socially and environmentally driven business model to support a circular economy.”


 

By Kathleen M. Roberts

On July 20, 2017, USDA released its technology transfer report for fiscal year 2016.  The report outlines the public release of information, tools, and solutions and the adoption and enhancement of research outcomes by collaborative partners and formal Cooperative Research and Development Agreements (CRADA) that occurred in 2016.
 
The report highlights several research initiatives by ARS scientists focused on supporting the bioeconomy, including:

  • Development of a new yeast strain with a unique cellulolytic enzyme that efficiently breaks down biofeedstock, shows resistance to inhibitory compounds, and eliminates the need to add other enzymes to the production process;
  • Engineering a yeast strain from a Brazilian ethanol plant to convert plant xylose to ethanol and then identifying a strain with excellent performance;
  • dentification of a strain of yeast capable of converting inulin, a major polysaccharide derived from coffee processing waste, into cellulosic ethanol;
  • Development of genetic methods to control the conversion of agricultural sugars to compounds called liamocins using yeast; and
  • Studying the use of lytic enzymes as an alternative to antibiotics for preventing and controlling bacterial contamination of fuel ethanol fermentations during biorefining.
The full report, titled “Fiscal Year 2016 Annual Report on Technology Transfer” is available on USDA’s website.

 

On February 18, 2016, at the Advanced Bioeconomy Leadership Conference 2016 (ABLC2016), Dr. Catherine Woteki, Chief Scientist and Undersecretary for Research, Education, and Economics at the U.S. Department of Agriculture (USDA), announced the release of the Federal Activities Report on the Bioeconomy. The report was created to share current federal agency activities that help to develop and support the bioeconomy. The report first introduces the importance of fostering the bioeconomy and the purpose of the Biomass Research & Development Board. From there the report covers all research, loan, and other projects that federal agencies are currently engaged in. The agencies covered in this report are:

  • USDA;
  • The U.S. Department of Energy (DOE);
  • The U.S. Environmental Protection Agency (EPA);
  • The U.S. Department of the Interior (DOI);
  • The National Science Foundation (NSF);
  • The U.S. Department of Defense (DOD);
  • The U.S. Department of Transportation (DOT); and
  • The Executive Office of the President of the United States.