Posted on July 10, 2023 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) hosted its 2023 Project Peer Review on April 3-7, 2023. During the event, more than 280 projects in BETO’s research, development, and demonstration portfolios presented their progress and accomplishments to the public and were reviewed by more than 50 external subject-matter experts from industry, academia, and federal agencies. The 2023 Project Peer Review included presentations in 11 technology areas:
- Advanced Algal Systems Program;
- Biochemical Conversion and Lignin Utilization;
- Agile BioFoundry Consortium;
- Catalytic Upgrading;
- Carbon Dioxide Utilization;
- Data, Modeling, and Analysis Program;
- Performance-Advantaged Bioproducts, Bioprocessing Separations, and Plastics;
- Organic Waste Conversion;
- Feedstock Technologies Program;
- Feedstock-Conversion Interface Consortium; and
- Systems Development & Integration Program.
The presentations are now available for download from BETO’s Project Peer Review web page.
Posted on June 05, 2023 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) announced on May 30, 2023, that the Chemical Catalysis for Bioenergy Consortium (ChemCatBio) will hold a webinar on June 14, 2023, on “Perspectives on Engineered Catalyst Design and Forming.” ChemCatBio is a consortium of eight DOE national laboratories overseen by BETO. According to BETO, the performance evaluation, and ultimate commercial adoption, of next-generation catalyst materials requires the development of strategies to prepare complex engineered catalysts suitable for operation in commercially relevant reactor configurations and scales. To leverage the fundamental advancements ChemCatBio has made in catalyst technology, BETO states that the consortium recently implemented a new vision to address risks by focusing on process integration and fuel production with engineered catalysts.
In the webinar, Bruce Adkins (Oak Ridge National Laboratory), Frederick Baddour (National Renewable Energy Laboratory), and Matthew Greaney (Clariant) will present critical considerations for the “engineered” catalyst; an industrial perspective on catalyst design and forming; and ChemCatBio’s industry-informed capabilities that support the transition to more commercially relevant catalyst forms. The webinar will end with a question and answer session.
Posted on May 31, 2023 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) announced on May 15, 2023, that a new workflow developed by researchers at the Agile BioFoundry (ABF), a BETO-funded consortium of national laboratories and Agilent Research Laboratories (Agilent) addresses the need for faster analytical tools. According to BETO, the workflow “combines state-of-the-art analytical technologies with a machine learning-based algorithm, providing a faster and more powerful way to process data that could accelerate the Design-Build-Test-Learn framework, a bio-engineering cycle used to improve biomanufacturing research and processes.”
BETO notes that speeding up the bio-engineering cycle could ultimately speed up biomanufacturing research. According to BETO, one of the biggest barriers to accomplishing this is the ability to improve the Learn step of the cycle, which involves using data to improve future cycles. Improvements to the Learn step can happen only if large amounts of high-quality data are gathered in the Test step of the cycle, however.
BETO states that the consortium teams set out to create a workflow that could generate high-quality analytical Test data that could feed into the Learn step. The workflow they developed includes several components:
- A high-throughput analytical method developed in collaboration with Agilent that enables a threefold reduction in sample analysis time (compared to previous conventional approaches) by using optimized liquid chromatography conditions;
- The Automated Method Selection Software tool, which predicts the best liquid chromatography method to use for analyzing new molecules of interest; and
- PeakDecoder, a novel algorithm that processes multi-dimensional metabolite data and automatically calculates errors in metabolite identification.
To test the workflow’s effectiveness, the researchers used it to study metabolites of various strains of microorganisms engineered by ABF. The microorganisms they tested all have the capacity to make various bioproducts, such as polymer and diesel fuel precursors. According to BETO, using their workflow, the researchers were able to interpret 2,683 metabolite features across 116 microbial samples.
BETO states that the researchers see PeakDecoder “as a stepping stone towards creating an automated data-gathering pipeline.” According to BETO, the team is already working on leveraging state-of-the-art artificial intelligence methods like computer vision used in other fields. The next version of PeakDecoder is expected to have improved automation and identification performance and to be more applicable to other types of molecular profiling, including proteomics workflows.
Posted on March 03, 2023 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) will host a listening session at the 2023 Advanced Bioeconomy Leadership Conference (ABLC) to obtain stakeholder feedback on the next Billion-Ton Report. BETO seeks suggestions for making this product even more useful, as well as feedback on the 2016 Billion-Ton Report and related products. The anticipated 2023 Billion-Ton Report will build on previous national assessments that have calculated the potential supply of biomass in the United States. Speakers for the session will include:
- Matt Langholtz, Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Team Lead;
- Nichole Fitzgerald, BETO Program Manager;
- Mark Elless, BETO Technology Manager; and
- Melissa Ladd, BETO Senior Facilitator.
The session will be held on Thursday, March 23, 2023, at 3:45 p.m. (EDT), at the Mayflower Hotel located in Washington, D.C. Registration for ABLC 2023 is open.
Posted on December 01, 2022 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
Research in the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) is organized around six highly integrated and transdisciplinary national research programs that are closely aligned with EPA’s strategic goals and cross-EPA strategies. Each program is guided by a Strategic Research Action Plan (StRAP) developed by EPA with input from its many internal and external partners and stakeholders. In October 2022, EPA published six StRAPs for fiscal years (FY) 2023-2026. EPA states that the StRAP for Chemical Safety for Sustainability (CSS) “is focused on addressing the pressing environmental and health challenge of a lack of sufficient information on chemicals needed to make informed, risk-based decisions.” The StRAP for CSS states that CSS will continue to:
- Develop the science needed to reduce, refine, and replace vertebrate animal testing consistent with EPA policies;
- Accelerate the pace of chemical assessment to enable our partners to make informed and timely decisions concerning the potential impacts of environmental chemicals on human health and the environment; and
- Provide leadership to transform chemical testing, screening, prioritization, and risk assessment practices.
Topic 1, Chemical Evaluation, includes three research areas, including emerging materials and technologies. The StRAP states that emerging materials and technologies often have unique physicochemical properties, warranting specialized approaches for evaluating hazard and exposure, and necessitating an evaluation of the environmental impacts of their use. In addition, investigation of novel products of synthetic biology, genome editing, and metabolic engineering is needed to support risk assessment of emerging biotechnology products. The emerging materials and technologies research area will develop, collate, mine, and apply information on emerging materials and technologies to support risk-based decisions, including potential impacts of disproportionately affected populations. It will address the additional data needed to characterize potential release of and exposure to these chemicals and materials, and subsequent environmental impacts of emerging materials on humans and ecological species. The research area will also address relevant cross-cutting priorities related to cumulative impacts and environmental justice potentially associated with incidental exposures.
Posted on October 14, 2022 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Agriculture’s (USDA) Biotechnology Risk Assessment Research Grants (BRAG) program supports the generation of new information that will assist federal regulatory agencies in making science-based decisions about the environmental effects of introducing genetically engineered organisms. In an October 27, 2022, technical assistance webinar, staff will provide an overview of the program, which is jointly administered by USDA’s National Institute of Food and Agriculture (NIFA) and Agricultural Research Service (ARS), and discuss details included in the fiscal year (FY) 2023 Request for Applications (RFA). NIFA plans to invest $5.5 million in this funding opportunity, which supports applied and/or fundamental research relevant to environmental risk assessment, including biological risk, and the federal regulatory process. Applications may be submitted by any U.S. public or private research or educational institution or organization. The closing date for grant applications is January 19, 2023. Registration for the webinar is required.
Posted on October 05, 2022 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
As reported in our September 13, 2022, blog item, on September 12, 2022, President Joseph Biden signed an Executive Order (EO) creating a National Biotechnology and Biomanufacturing Initiative “that will ensure we can make in the United States all that we invent in the United States.” The White House hosted a Summit on Biotechnology and Biomanufacturing on September 14, 2022. According to the White House fact sheet on the summit, federal departments and agencies, with funding of more than $2 billion, will take the following actions:
- Leverage biotechnology for strengthened supply chains: The Department of Health and Human Services (DHHS) will invest $40 million to expand the role of biomanufacturing for active pharmaceutical ingredients (API), antibiotics, and the key starting materials needed to produce essential medications and respond to pandemics. The Department of Defense (DOD) is launching the Tri-Service Biotechnology for a Resilient Supply Chain program with a more than $270 million investment over five years to turn research into products more quickly and to support the advanced development of biobased materials for defense supply chains, such as fuels, fire-resistant composites, polymers and resins, and protective materials. Through the Sustainable Aviation Fuel Grand Challenge, the Department of Energy (DOE) will work with the Department of Transportation and the U.S. Department of Agriculture (USDA) to leverage the estimated one billion tons of sustainable biomass and waste resources in the United States to provide domestic supply chains for fuels, chemicals, and materials.
- Expand domestic biomanufacturing: DOD will invest $1 billion in bioindustrial domestic manufacturing infrastructure over five years to catalyze the establishment of the domestic bioindustrial manufacturing base that is accessible to U.S. innovators. According to the fact sheet, this support will provide incentives for private- and public-sector partners to expand manufacturing capacity for products important to both commercial and defense supply chains, such as critical chemicals.
- Foster innovation across the United States: The National Science Foundation (NSF) recently announced a competition to fund Regional Innovation Engines that will support key areas of national interest and economic promise, including biotechnology and biomanufacturing topics such as manufacturing life-saving medicines, reducing waste, and mitigating climate change. In May 2022, USDA announced $32 million for wood innovation and community wood grants, leveraging an additional $93 million in partner funds to develop new wood products and enable effective use of U.S. forest resources. DOE also plans to announce new awards of approximately $178 million to advance innovative research efforts in biotechnology, bioproducts, and biomaterials. In addition, the U.S. Economic Development Administration’s $1 billion Build Back Better Regional Challenge will invest more than $200 million to strengthen America’s bioeconomy by advancing regional biotechnology and biomanufacturing programs.
- Bring bioproducts to market: DOE will provide up to $100 million for research and development (R&D) for conversion of biomass to fuels and chemicals, including R&D for improved production and recycling of biobased plastics. DOE will also double efforts, adding an additional $60 million, to de-risk the scale-up of biotechnology and biomanufacturing that will lead to commercialization of biorefineries that produce renewable chemicals and fuels that significantly reduce greenhouse gas emissions from transportation, industry, and agriculture. The new $10 million Bioproduct Pilot Program will support scale-up activities and studies on the benefits of biobased products. Manufacturing USA institutes BioFabUSA and BioMADE (launched by DOD) and the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) (launched by the Department of Commerce (DOC)) will expand their industry partnerships to enable commercialization across regenerative medicine, industrial biomanufacturing, and biopharmaceuticals.
- Train the next generation of biotechnologists: The National Institutes of Health (NIH) is expanding the Innovation Corps (I-Corps™), a biotech entrepreneurship bootcamp. NIIMBL will continue to offer a summer immersion program, the NIIMBL eXperience, in partnership with the National Society for Black Engineers, which connects underrepresented students with biopharmaceutical companies, and support pathways to careers in biotechnology. In March 2022, USDA announced $68 million through the Agriculture and Food Research Initiative to train the next generation of research and education professionals.
- Drive regulatory innovation to increase access to products of biotechnology: The Food and Drug Administration (FDA) is spearheading efforts to support advanced manufacturing through regulatory science, technical guidance, and increased engagement with industry seeking to leverage these emerging technologies. For agricultural biotechnologies, USDA is building new regulatory processes to promote safe innovation in agriculture and alternative foods, allowing USDA to review more diverse products.
- Advance measurements and standards for the bioeconomy: DOC plans to invest an additional $14 million next year at the National Institute of Standards and Technology for biotechnology research programs to develop measurement technologies, standards, and data for the U.S. bioeconomy.
- Reduce risk through investing in biosecurity innovations: DOE’s National Nuclear Security Administration plans to initiate a new $20 million bioassurance program that will advance U.S. capabilities to anticipate, assess, detect, and mitigate biotechnology and biomanufacturing risks, and will integrate biosecurity into biotechnology development.
- Facilitate data sharing to advance the bioeconomy: Through the Cancer Moonshot, NIH is expanding the Cancer Research Data Ecosystem, a national data infrastructure that encourages data sharing to support cancer care for individual patients and enables discovery of new treatments. USDA is working with NIH to ensure that data on persistent poverty can be integrated with cancer surveillance. NSF recently announced a competition for a new $20 million biosciences data center to increase our understanding of living systems at small scales, which will produce new biotechnology designs to make products in agriculture, medicine and health, and materials.
A recording of the White House summit is available online.
Posted on August 29, 2022 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
On August 25, 2022, the U.S. Environmental Protection Agency (EPA) announced that registration was open for the 2022 Conference on the State of the Science on Development and Use of New Approach Methods (NAM) for Chemical Safety Testing. EPA notes that there will be limited availability in person at EPA headquarters in Washington, DC, on October 12-13, 2022, and a virtual option will also be available. Conference topics include:
- Variability and Relevance of Traditional Toxicity Tests;
- Evolution of Validation and Scientific Confidence Frameworks to Incorporate 21st Century Science; and
- Breakout groups discussing Variability of Traditional Toxicity Tests, Relevance of Traditional Toxicity Tests, and Feedback on EPA Scientific Confidence Framework.
EPA asks that attendees register for the NAMs conference before October 7, 2022.
On October 18, 2022, EPA will provide training on the Computational Toxicology (CompTox) Chemicals Dashboard, which is part of a suite of databases and web applications developed by EPA to support the development of innovative methods to evaluate chemicals for potential health risks. The computational toxicology tools and data in the Dashboard help prioritize chemicals based on potential health risks. Specifically targeted for decision-makers, the training will provide:
- An overview of the Dashboard content and function;
- Application-oriented use-case demonstrations in the areas of general use, hazard/bioactivity, exposure/absorption, distribution, metabolism, and excretion (ADME)-in vitro to in vivo extrapolation (IVIVE), and chemistry; and
- Opportunities for participatory learning and engagement.
The training will offer information about the latest release of the Dashboard and how it can be used to gather actionable information about chemical properties and risks through case examples, demonstrations, and hands-on exercises. Registration is now open (attendees must register for the training portions individually):
Posted on August 23, 2022 by Lynn L Bergeson
By Lynn L. Bergeson and Carla N. Hutton
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) announced on August 11, 2022, that a research team from Pacific Northwest National Laboratory investigated how potassium in biomass feedstocks poisons a catalyst. The researchers focused their study on potassium, a common alkali metal found in biomass feedstocks, since previous analysis of deactivated catalysts after catalytic fast pyrolysis (CFP) of woody biomass feedstock revealed potassium accumulation on the catalysts’ surface.
The research team simulated catalyst poisoning at different potassium levels to trigger deactivation during industrial operations. They then analyzed the catalysts and conducted kinetic measurements to determine how the catalysts’ ability to catalyze chemical reaction changed with the introduction of potassium. According to BETO, the team found potassium poisoning could be substantially mitigated with a developed regeneration method -- a water washing process -- that can successfully remove most of the loaded potassium, restoring more than 90 percent of the catalytic activities.
BETO states that the results of these studies provide new insights for the bioenergy industry that will foster improved catalyst design and regeneration for longer lasting catalysts. The studies also created “a solid knowledge base for developers of biomass conversion technologies to continue to build upon, making new and innovative conversion technologies less risky to research and develop.” According to BETO, the work “also supports accelerated process development that can help industry convert biomass feedstocks commercially, leading to more effective and inexpensive production of biofuels.”
Posted on March 21, 2022 by Lynn L Bergeson
By Lynn L. Bergeson
On March 16, 2022, the House Science, Space, and Technology Subcommittee on Energy held a hearing on “Bioenergy Research and Development for the Fuels and Chemicals of Tomorrow.” According to the hearing charter, the purpose of the hearing was to examine the status of bioenergy research, development, and demonstration (RD&D) activities carried out by the U.S. Department of Energy (DOE). The hearing also considered advancements in bioenergy research and the potential role of this resource in a cleaner energy transition. Lastly, the hearing was intended to help inform future legislation to support and guide the United States’ bioenergy RD&D enterprise. Read more in Bergeson & Campbell, P.C.’s (B&C®) March 18, 2022, memorandum, “House Committee Holds Hearing on Bioenergy RD&D for the Fuels and Chemicals of Tomorrow."
|